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MOTIVATION	

The	many	faces	of	video.	



New	purposes	

Video	events	will	be	used	in	many	more	new	ways.	



New	surveillance	

reconstruction																																					prevention		

...	and	reused	in	old	applications	...	



New	interaction	

Chen	MM	2004	
...	and	used	as	part	of	a	loop.		



FOCUS	

Video	is	filled	with	what?	



Acts	>	Actions	>	Events	-	… 	

Acts:	driving	a	screw	

Events:	birthday	party	

Actions:	grooming	an	animal	



Act	>	Action	>	Event	>	…	

Acts 	 	act	atomic	motion	pattern 		 	sleeping	
	 	 	 	 	 	 	 	 	 	 	 	running		
	 	 	 	 	 	 	 	 	 	 	 	driving	a	screw	
	 	 	action	functional	pattern 	 	shaking	hands	
	 	 	 	 	 	 	 	 	 	 	 	removing	a	lit	
	 	 	 	 	 	 	 	 	 	 	 	serving	the	ball 		

Events	 	event	purposeful	pattern	 	 	serving	an	ace	
	 	 	 										of	actors,	objects	 	 	welcoming	a	friend	
	 	 	 	 	 				and	motions 	 	repairing	an	appliance	

8	

m
or
e	
de
gr
ee
s	o

f	f
re
ed
om

,	
rig

id
	sc

he
m
es
	c
an

’t	
w
or
k	



Act	>	Action	>	Event	>	…	
	 	 	 	 	 	 	 	 	time	frame 	pattern	variations	

Acts 	 	act	 	sleeping 	 	 	±1s		 	 	pose	
	 	 	 	 	running	 	 					 	±2s		 	 	dress,	gait	
	 	 	 	 	driving	screw					 	±2s		 	 	repetition	pace		
	 	 	action	shaking	hands			 	2-5s 	 	routine,	active,	solid	
	 	 	 	 	removing	a	lit			 	2-5s 	 	size,	temperature	
	 	 	 	 	serving	ball	 				 	2-5s 	 	camera	

Events	 	event 	serving	an	ace		 	5-10s 	 	camera,	in	
	 	 	 							welcoming								 	1-5m 	 	choice	acts,	actions	
	 	 	 	 	repairing 	 			 	1-60m	 	choice	acts,	actions	
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DRIVING	FACTORS	
	
	What	makes	success?	



Goalgle	

C.Snoek	ICME	2003	

9	hours	of	video.	
	
Data	are	the	starting	point.	



CCV	Columbia	

Everyone	their	own	results.	
	
Progress	needs	a	community	who	agree.	

http://www.ee.columbia.edu/ln/dvmm/CCV/	



TRECVID	Internet	video	collections	
Collection	Name		 Designated	Uses	 Target	sizes	 Annotation	
Pilot	 2010	

Development	collection	
Test	collection	

	
1,723	clips	
1,742	clips	
(100	hours)	

Clip	content	
annotation	for	both	
sets	

Development	(DEV)	 2011	
Split	into	two	subsets:	
(1)	Transparent	(DEV-T)	
(2)	Opaque	(DEV-O)	

	
2012-2015	

(1)	and	(2)	merged	to	a	
single	training	collection	

44K	clips,	
(~	1400	
hours)	

For	MED	‘11:		
Clip	content	
annotation	for	the	
transparent	subset	
After	MED	‘11:		
Clip	content	
annotation	for	the	
opaque	subset	

Progress	 2012-2015:	test	collection	 120K	clips,	
4000	hrs	

No	clip	content	
annotation	

Novel	1	 2014:	test	collection	 120K	clips,	
4000	hrs.	

No	clip	content	
annotation	

Novel	2	 2015:	test	collection	 120K	clips,	
4000	hrs.	

No	clip	content	
annotation	

The	important	moment	
	
The	driving	factor	is	a	shared	&	open	competition.	



CLASSIFICATION	

Giving	events	a	name,	step	by	step	TRECvid.	



2010	Media	diversity	

Diverse	is	better,	more	is	better,	fusion	is	better.	

	
	
	
	

Y.G.Jiang	TRECVID10	P.Natarjan	CVPR12	Wang	ICCV13	others	
	



2012/13	Trajectories	and	aggregation	

Dense	trajectories	are	more	and	Fisher	aggregation	are	fusion.	
This	is	the	end	of	hand	engineered	features.	
	
	
	
	
	

INRIA	LEAR	H.Wang	CVPR	2011	
	



2014	Deep	learning	&	VLAD	

Networks	integrate	features	and	classifiers.	
Deep	learning	builds	in	fusion	of	diverse,	more	and	late.	

CMU	Xu	CVPR	2015	



2015	Prior	knowledge	

Insert	15000	ImageNet	detectors	pruned,	but	first	
reorganize	prior	knowledge	removing	fine	semantics	and

	 	 	 	 	 	 	 	 	 	 	 	merging	small	sets.	

	 	 	 	 	 	 	 	 	 	 	 		

UvA	P.Mettes	ICMR	2016	



2016	Joint	embedding	

UvA	A.Habibian	MM	2014	

Fuse	media	diverse	in	one	embedding	to	compose	stories	
	

	 	 	 	 	 	 	 	 	Pre-train	representation	
	 	 	 	 	 	 	 	 	on	webly-supervised	videos	

	
	 	 	 	 	 	 	 	 	..	detectors	selected	for		
	 	 	 	 	 	 	 	 	generality	and	specificity.	
	 	 	 	 	 	 	 		
	 	 	 	 	 	 	 	 	… to	achieve	stories,	even	
	 	 	 	 	 	 	 	 		when	that	class	has	few	data.	

	



2017	Expand	training	material	

More	by	less	data	
Example1_1	 Example1_2	 Example1_3	

Cosine	similarity	

UvA	D.	Koelma	2017		



RETRIEVAL	

Every	question	is	new,	so	classification	not	for	every	day.	



Event	retrieval:	is	it	zero-shot?		

Zero	shot	aims	to	classify	test	videos	by	predefined	
mutual	relationship	using	class-to-attribute	mappings	
	
	
	
	
	
	
We	aim	for	a	new	event	by	a	text	only.	
	
	
	

Lampert	PAMI	2013	others	



Event	retrieval	without	examples	

The	aim	is	event	recognition	without	examples,	ruling	out	
representing	videos	as	histograms	of	features.	

Jiang	TRECVID	2010	Natarajan	CVPR	2012	Wang	ICCV	2013	

term 
extraction term	vector	

video to 
lingual term	vector	

concept 
matching 

test						
videos	

event	
description	



Nouns	are	easy,	propositions	are	not	

	
	
	
	
	
	
	



Can	we	have	a	vote?	



Nouns	are	stable,	adjectives	personal	

Old	is	visually	different	for	every	notion.	



Concept	embedding		
for	retrieval	without	examples	

Representing	videos	as	histograms	of	concept	scores	
	
	
	
	

	
	
	
Problem:	one	classifier	against	the	complexity	of	the	world.	

Wu	CVPR	2014	A.Habibian	ICMR	2014	

Classification 

•  Attribute detection 

•  Concept detection 

Local 
descriptors 

•  Visual descriptors 
• SIFT, HOG, GIST, … 

•  Video descriptors 
• MBH, STIP, … 

•  Audio descriptors 
• MFCC, AIM, … 

Feature 
embedding 

•  Bag-of-words 

•  VLAD 

•  Fisher vector 

• Audio-visual BoW 

Convolutional	Neural	Network	



CONCEPT	EMBEDDING	



Concept	embedding	label	expansion	

Expanding	the	labels	by	logical	combinatorics,	
	
	
	
	
	
	
	
Label	expansion	expands	the	vocabulary	for	free:	
bike	.and.	road	for	bicycle	trick,	not	bike	.or.	road.	
	 Habibian	ICMR	2014	



Concept	embedding	qualitative	results	

Top	ranked	videos	for	flash	mob	gathering.	
Most	important	concepts	in	their	video	representation	
	
	
	
	
	

	 	 	 	 	Still	need	a	labeled	basis	
	 	 	 	 	for	each	concept	classifier.	

	
	
	
	
	
	
	
	

	

Habibian	ICMR	2014	



VIDEO	TO	TAG-TERM	EMBEDDING	



Embedding	inspiration	from	tags	

Embedding	based	on	free	social	tagged	videos	only,	
without	the	need	for	training	any	intermediate	detectors.	
	
Inspired	by:	

Xirong Li TMM 2009 



Video2vec	embedding	

Can	we	learn	the	embedding	from	videos	and	their	stories?	

	
	
	
Story	usually	highlights	the	key	concepts	in	video	jointly.	
Videos	and	stories	are	freely	available	on	YouTube.	

Video	

Story	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



Video2vec	embedding	

Joint	space	where	xi	W	≈	yi	A.	
Explicitly	relate	training	W	and	A	from	multimedia.	
	
W	=	Visual	projection	matrix	 	individual	term	classifiers		
A		=	Textual	projection	matrix 	select/group	terms	
	
	
	

Bike	
Motorcycle	

Stunt	
Joint	

embedding	
yi	xi	

W	 A	

	Rasiwasa	MM	2010	Weston	IJCAI	2011	Akata	CVPR	2013	



Video2vec	embed	the	video	story	

	
	
	
	
Learn	W	and	A	such	that	descriptiveness	preserves	
video	descriptions	and	predictability	recognizes	
terms	from	video	content	
	

Bike	
Motorcycle	

Stunt	

yi	xi	
joint	embedding	

W	 A	si	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



Descriptiveness	en	predictability	are	compelling	

	
	

	
	
	
	

Video2vec	key	observation	

By	grouping	terms,	the	number	of	classes	is	reduced.	
For	training	classifiers,	more	positives	needed	per	group.	
We	can	train	from	freely	available	web	data.	



Video2vec	joint	optimization	

S	is	(the	size	of)	the	embedding	
Ld	Loss	function	for	descriptiveness.	
Lp	Loss	function	for	predictability.	
	
	
Jointly	optimize	descriptiveness	and	predictability.	

Figure 2: Dataflow for learning the VideoStory and
using it for event recognition and translation.

2. VIDEOSTORY FRAMEWORK
Our VideoStory framework contains three major parts,

schematically illustrated in Figure 2.

1. The VideoStory training, where we learn our multime-
dia embedding from a dataset consisting of videos with
descriptions. This training outputs two projection ma-
trices: a visual projection matrix W , and a textual
projection matrix A. The VideoStory representation
S is computed from the visual projection matrix W
and low-level video features.

2. The event classifier training, where we use o↵-the-shelf
SVMs to train classifiers on a dataset consisting of
videos with a few event labels. The videos are encoded
with our VideoStory representation.

3. The recognition and translation stage, where we eval-
uate the event classifiers, and use the semantics of our
representation to describe videos.

In this section we introduce the VideoStory embedding, its
design principles and how it is obtained by learning.

2.1 Objective Function
Using the notation summarized in Table 1, we will de-

scribe the objective function we minimize to obtain the Video-
Story representation. To learn the embedding we use a
dataset of videos, represented by low-level video features
X, and their descriptions, represented by binary term vec-
tors Y , indicating which terms are present in each video
description. While we use and emphasize low-level visual
features in this work, our approach is generic and can create
a VideoStory from any multimedia feature.

The aim of the VideoStory representation is to balance
two compelling forces:

1. Descriptiveness, to preserve the information encoded
in the video descriptions Y as much as possible, and

2. Predictability, to ensure that the VideoStory could be
e↵ectively recognized from visual video content X.

Therefore, we learn the VideoStory representation by both
objectives in a joint optimization framework.

Notation Description
N Number of videos
M Number of unique terms in descriptions
D Dimensionality of visual feature
k Dimensionality of VideoStory embedding
X 2 RD⇥N Matrix of low-level video features
Y 2 {0, 1}M⇥N Matrix of binary term vectors
W 2 RD⇥k VideoStory visual projection
A 2 RM⇥k VideoStory textual projection
S 2 Rk⇥N VideoStory embedding
xi,yi, si The column representing the i-th video

Table 1: Summary of notation.

The VideoStory representation is learned by minimizing:

LVS(A,W ) = min
S

Ld(A,S) + Lp(S,W ), (1)

where A is the textual projection matrix, W is the visual
projection matrix, and S is the VideoStory embedding. The
loss function Ld corresponds to our first objective for learn-
ing a descriptive VideoStory, and the loss function Lp cor-
responds to our second objective for learning a predictable
VideoStory. The VideoStory embedding S interconnects the
two loss functions. To the best of our knowledge this joint
embedding framework is novel.

Descriptiveness For the Ld function, we use a variant
of regularized Latent Semantic Indexing [38]. This objective
minimizes the quadratic error between the original video
descriptions Y , and the reconstructed translations obtained
from A and S:

Ld(A,S) =
1
N

NX

i=1

kyi �Asik22 + �a⌦(A) + �s (S), (2)

where  (·) and ⌦(·) denote regularization functions, and
�a � 0 and �s � 0 are regularizer coe�cients. We use
the squared Frobenius norm for regularization, which is the
matrix variant of the `2 regularizer, i.e., ⌦(A) = kAk2F =P

ikaik22 =
P

ij a
2
ij , the sum of the squared matrix elements.

Similarly for the VideoStory matrix  (S) = kSk2F.
The main di↵erence with regularized Latent Semantic In-

dexing [38] is that they used an `1 regularizer, ⌦(A) =P
ikaik1, which enforces sparsity in the textual projection

A. However, with our larger representation (typically we
use k between 256 and 1,024 in our experiments compared
to only k = 20 used in [38]) and fewer number of unique
terms (around 10K, compared to 100K), enforcing sparsity
is not necessary for good performance.
Note that many other textual embedding methods, such

as Sparse Coding and probabilistic Latent Semantic Index-
ing [12] can be formulated similar to Eq. (2), when appropri-
ate regularization functions ⌦(·) and  (·) are used. Further-
more, when the textual projection matrix A is constrained
such that each column has a single non-zero value, i.e., se-
lects a single term, our objective becomes very close to meth-
ods that select the best single term labels, such as [4].

Predictability The Lp function measures the occurred
loss between the VideoStory S and the embedding of low-
level videos features using W . Since the VideoStory S is
real valued, as opposed to a binary or multi-class encod-
ing, we can not rely on standard classification losses such as
the hinge-loss used in SVMs. Therefore, we define Lp as a

37	A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



The	Video2vec	embedding	should	be	descriptive.	
	
	
	
	
	
Latent	semantic	indexing	with	L2	norm.	
	
	
	
	
	
	

Video2vec	objective	descriptiveness	

Original	transcriptions	
Reconstructed	terms	

Regularizers	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



The	Video2vec	embedding	should	be	predictable.	
	
	
	

Video2vec	objective	predictability	

Video2vec	embedding	

Video	feature	embedding	

Regularizer	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



Video2vec	46K	dataset	

Videos	and	title	descriptions	from	higher	quality	YouTube,	
	46K	videos,	19K	terms	in	description.	

Features	xi		any	combination.	
Seeded	from	video	event	descriptions	yi		in	bags.	

Available	for	download:	www.mediamill.nl	



Video2vec	Training	

Video2vec	
Algorithm	

W	

A	

Video	and	descriptions	

Video2vec	training	method	
	
Stochastic	Gradient	Descent	starting	from	a	
random	sample.	
The	sample	gradient	wrt	objective	is:	

Update	parameters	with	step-size	η.	
Start	A	and	S	from	SVD	of	term	vectors	Y.	
	
	

regularized regression, similar to ridge regression:

Lp(S,W ) =
1
N

NX

i=1

ksi �W>xik22 + �w⇥(W ), (3)

where we use (again) the Frobenius norm for regularization
of the visual projection matrix W , ⇥(W ) = kW k2F, and �w

is the regularization coe�cient.

2.2 Learning Algorithm
To handle large scale datasets and state-of-the-art high-

dimensional visual features, e.g., Fisher vectors [32] on low-
level video features [37] or deep learned representations [19],
we employ SGD (Stochastic Gradient Descent) [5]. SGD
is an e�cient online procedure and converges fast to the
(global) minimum of a model. At each step, training with
SGD consists of (i) choosing a random sample from the
dataset consisting of a video and a description, (ii) comput-
ing the sample estimate of the gradient of the parameters in
the model, and (iii) updating the parameters in the direc-
tion of the gradient with step-size ⌘. The number of passes
over the datasets, often denoted as epochs, and the step-size
⌘ are hyper-parameters of SGD.

The VideoStory objective function, as given in Eq. (1),
is convex with respect to matrix A and W when the em-
bedding S is fixed. In that case, the joint optimization is
decoupled into Eq. (2) and Eq. (3), which are both reduced
to a standard ridge regression for a fixed S. Moreover, when
both A and W are fixed, the objective Eq. (1) is convex
w.r.t. S. Therefore we use standard SGD by computing the
gradients of a sample w.r.t. the current value of the param-
eters, and we minimize S jointly with A and W .

Lets denote a randomly sampled video and description
pair at step t by (xt,yt), and let st denote the current Video-
Story embedding of sample t. The gradients of Eq. (1) for
this sample w.r.t. A,W and st are given by:

rALVS = �2 (yt �Ast) s
>
t + �aA, (4)

rWLVS = �2 xt

⇣
st �W>xt

⌘>
+ �wW , and (5)

rstLVS = 2
h
st �W>xt �A> (yt �Ast)

i
+ �sst. (6)

Our algorithm is summarized in Algorithm 1.
The e↵ect of joint learning the descriptiveness and the

predictability, becomes clear in Eq. (6), where both the tex-
tual projection matrix A and visual projection matrix W
contribute to learning the VideoStory embedding S. This
embedding S is subsequently used to obtain the textual pro-
jection A matrix, in Eq. (4), and the visual projection W
matrix, in Eq. (5). This leads to the VideoStory embed-
ding, which is both descriptive, by preserving the textual
information, and predictable, by minimizing the visual pre-
diction loss.

2.3 Using the VideoStory Embedding
The result of training our VideoStory embedding is the

visual projection matrix W and the textual projection ma-
trix A. These are used to encode a new video i into our
VideoStory representation si.

In the case that both a video xi and description yi are
given, we could obtain the semantic embedding by return-
ing si from Eq. (1), while keeping both A and W fixed.
However, in practice most videos are not provided with a

input : X, Y , k, ⌘ (step-size), m (max-epochs)
output: W and A

A, W , and S  random (zero-mean, unit variance)

for e 1 to m do
for i 1 to N do

Pick a random video-description pair (xt,yt)
Compute gradients w.r.t. A,W and st

Update parameters:

A  A� ⌘trALVS see Eq. (4)

W  W � ⌘trWLVS see Eq. (5)

S  st � ⌘trstLVS see Eq. (6)
end

end
return: W and A
Algorithm 1: Pseudocode for learning VideoStory

description. Therefore, we use:

si = W>xi, (7)

to construct our VideoStory representation from the low-
level video features xi. Given an embedded video si, we
can translate a video by:

ŷi = Asi, (8)

where the terms with the highest values are most relevant
for this video.

3. HARVESTING VIDEOS AND THEIR DE-
SCRIPTIONS FROM THE WEB

Rather than describing the video content manually, we opt
to harvest both videos and descriptions from the web. Video
sharing web sites, such as YouTube and Vimeo, provide a
rich and varied source of videos and user provided descrip-
tions, such as their title captions and comments. Although
video title captions do not necessarily correspond to the vi-
sual content of the videos, we will show that by harvesting
a large number of these captioned videos and applying a set
of quality filters we obtain reliable video descriptions.
We start from an initial pool of descriptions, as the col-

lection seeds, and iteratively collect videos and their title
captions from YouTube. For the collection seeds, we rely
on 3,000 sentence descriptions from the training partition
of the NIST TRECVID HAVIC corpus [33]. Then each de-
scription within the pool is queried to YouTube and the
25 most relevant videos are retrieved, based on YouTube’s
textual similarity search. Every retrieved video is passed
through a set of quality filters. The videos which pass all
the filters are added to the collection and their title captions
are added to the description pool. We iteratively repeat this
procedure until enough videos are collected. We will first de-
tail our quality filters before providing the statistics of our
harvested video and description dataset.

3.1 Quality Filters
Event Filter Events are generally described by their ac-

tors, actions, and possible involved objects [10]. Hence we
assume that a description of an event video should contain
actors, actions and objects. For this purpose, we parse the
grammatical structure of title captions using a probabilistic

Bottou	ICCS	2010	



Video2vec	at	work	

3.	Cosine	distance	match		

1.	Project	visual	features	

2.	Translate	to	text	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



Video2vec	predicted	terms	

A.Habibian ACM MM 2014 A.Habibian PAMI 2017 



UNIFIED	METRIC	EMBEDDING	



Unified	metric	embedding	

20%	
	
	

60%	

N.Hussein CVPR2017	

30%	
	
	

50%	



Zero-exemplar is learning from pre-defined events plus	
novel ones as a probability over the existing events. 

Unified	metric	embedding	

N.Hussein CVPR2017	
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Unified	metric	embedding	quantitative	

N.Hussein CVPR2017	



Renovating home improve a home by rebuilding parts 
of the structures. 

Success 

Failure 

Unified	metric	embedding	qualitative	

N.Hussein CVPR2017	



EVENT	RECOGNITION	BY	EMBEDDING	



Embedding	results	

N.Hussein CVPR2017 



Retrieval	by	embedding	results	

Authors	 Published	 mAP	
Habibian	et	al.						concept	embedding	 ICMR	2014	 6.4	
Ye	et	al.		 MM	2015	 9.0	
Mazloom	et	al.	 ICMR	2015	 11.9	
Wu	et	al.	 CVPR	2014	 12.7	
Jiang	et	al.	 AAAI	2015	 12.9	
Mazloom	et	al.					tag	embedding	 TMM	2016	 12.9	
Liang	et	al.													big	data	&	reranking	 MM	2015	 18.3	
Habibian	et	al.						joint	embedding	 TPAMI	2017	 20.0	
Hussein	et	al.								unified	metric	embed	 CVPR	2017	 17.9	

N.Hussein CVPR2017 A.Habibian PAMI 2017 



OTHER	CHALLENGES	
In	the	kitchen	of	the	future.	



TRECVID	SURVEILLANCE	EVENTS	>	
TRECVID	ACTIVITIES	EXTENDED	VIDEO	
	
COMPLEX	ACTIVITIES	IN	VIDEO	
	
	

slides	by	Jon	Fiscus	(NIST)	

at	the	UvA	by	N.Hussein,	S.	Gavves,	C.	Snoek	others		



Multi-cam	surveillance	from	text	
Controlled	

Access	Door	 Waiting	Area	 Debarkation	Area	

Elevator	Close-Up	 Transit	Area	

1 2 3 

4 5 

1 
2 3 

4 

5 



Events	of	Interest	
Single	Person	events	

PersonRuns	 Someone	runs	

Pointing	 Someone	points	

Single	Person	+	Object	events	

CellToEar	 Someone	puts	a	cell	phone	to	his/her	head	
or	ear	

ObjectPut	 Someone	drops	or	puts	down	an	object	

Multiple	People	events	

Embrace	 Someone	puts	one	or	both	arms	at	least	
part	way	around	another	person	

PeopleMeet	 One	or	more	people	walk	up	to	one	or	
more	other	people,	stop,	and	some	
communication	occurs	

PeopleSplitUp	 From	two	or	more	people,	standing,	
sitting,	or	moving	together,	
communicating,	one	or	more	people	
separate	themselves	and	leave	the	
frame	

55	



ActEV	new	task	per	2018	

Successor	of	Surveillance	Event	Detection	by	adding	a	
large	collection	of	multi-camera	video	data,	both	of	
simple	and	complex	activities.		
ActEV	will	address	activity	detection	for	both	forensic	
applications	and	for	real-time	alerting.	



Recognizing	complex	tasks 
Strong temporal models are no longer valid. 
 
 
 
 
 
This depicts cooking food regardless frame order.	
 

Epic kitchen 




